
of the temperature of thermal expansion of the product [4], which also results in diminution 
of the process intensity. 

Therefore, questions of the stability of the isometric interfacial phase surfaces should 
certainly be taken into account in the construction of sublimating installations and the 
determination of optimal modes for their operation. 

NOTATION 

%, heat-conduction coefficient; 0, density; L, specific heat of sublimation; x, y, h, 
coordinates; R, H, tablet radius and thickness; q, heat flux; o, rms deviation; a, thermal 
diffusivity coefficient; Tf, time for fluctuation development; Tpl, time of plane front 
passage; Tr, temperature of the ice surface at the side of the heated substrate; Te, equili- 
brium temperature on the sublimation boundary. 
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MELTING OF PORE ICE WITH THE FORMATION OF AN EXTENDED ISOTHERMAL ZONE 

R. I. Medvedskii UDC 536.42:551~34 

The melting of pore ice, characterized by the formation of a transition zone in which 
the two phases simultaneously coexist, is investigated. The extent of the transition 
zone is related to the rate of inflow of water into the melted region of the pore 
space from outside. 

Usually, the melting of ice in the pores of a coarse-grained medium is described mathe- 
matically in terms of the classical Stefan problem, on the assumption that the regions of 
different states of aggregation of the water are separated by a surface of zero thickness. 
This assumption does not always have to be made and, as shown in [I, 2], even in a homogeneous 
body it is possible for the front to split and form an extended isothermal zone. Obviously, 
in composite media, e.g., in frozen sand, in which ice is one of the components, there are 
more conditions that determine the splitting of the front. One of these is a higher rate of 
heat transfer in the mineral skeleton than in the pore ice. As a result, there is formed a 
zone of coexistence of water and ice in which the water coats the warm particles of the 
skeleton while the ice occupies the centers of the pores. 

The solution of the model problem of the melting of sheets of ice alternating with sheets 
of quartz of equal thickness has shown that this zone is longest at the beginning of the 
process and subsequently contracts to a small but finite length. This result was obtained on 
the assumption that no water enters the melting zone from outside, and it is in this case that 
the formation of a front after a fairly long interval is observed. 

The inflow of water from the outside can retard the contraction of the transition zone 
and ultimately lead to the splitting of the front. The inflow of water is the result of the 
specific volume of the ice decreasing by an amount (Pw -- Pi)/0w, which leads to a sharp de- 
crease in the pressure in the pore space, if it is isolated from the external medium, to a 
value corresponding to the vapor tension of the water. Later, this observation will be used 
to estimate the pressure at the leading front. 
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In order to investigate this process we will consider a homogeneous sand bed occupying 

the half-space (x~0) whose pores are initially completely full of ice. We assume that at 

each moment of time the region of joint coexistence of water and ice occupies a prismatic volume 
bounded by the moving coordinatex xm(t) and Xs(t), at which the constant temperatures T m = 

T s = 0~ are given. 

This idealization does not contradict the physical possibilities. As is known, under 
thermostatically controlled conditions at 0~ water and ice can coexist for an infinitely 
long time in dynamic equilibrium: if some small mass of ice melts, the same mass of water 
will freeze, and the fall in temperature associated with the thawing of the ice will be 
compensated by the increase associated with the freezing of the water. However, in the 
presence of a transition zone this equilibrium is disturbed because the thawing of a small 
mass of ice results in the formation of a free space which is quickly filled by warmer water 
from the adjacent, completely thawed out zone. Thus, under these conditions the thawing of 
the ice does not involve the freezing of water and the process develops in a particular 

direction. 

By definition, in the region 0 ~ x~ x m the pore space of the bed is occupied by water, 
while in the region Xs ~x < ~ the pores are full of ice and this part is impermeable for the 
water. In the zone x~[Xm, xs] water and ice simultaneously coexist. Here the permeability 
k(o) varies monotonically with the water saturation o(x, t) from zero at the leading front 
to the total permeability of the bed at the trailing front k m, where the water saturation 

o(x m, t) is taken equal to unity. 

If the water is assumed to be incompressible, then, obviously, the variation of the mass 
of the water entering this zone will be determined by compensation of the volume deficit 

associated with the thawing of the ice, i.e. 

Ov A Oa A m Pw-- pi 
- ~ ;  = - ( 1 )  

ax at 9~ 

Given the assumptions, at the leading front the flow ceases (v(x s, t) = 0), and at the 
trailing front the percolation rate has the same value as at the entrance to the be d , i.e., 

v ( x m ,  t ) = v ( o ,  O- 
The integration of (i) gives 

v(xm, t) = A 
d x$ 

(2) 

The percolation rate is related to the pressure field in the completely and partially 

thawed zones by the equations [3] 

O~P - 0 ;  xE [0, xm]; O k(~) Op__ _ A O~ ; xE [xm, ::~]. (3) 
dxZ Ox ~ Ox Ot 

From this there follow the equations 

where p0 = p(0, t). 

km Po - -  P,~ 
v (o,  t) = v (x, . ,  t)  = 

Xm 
X8 ('1 X8 &s 

�9 k ( ~ )  ~ - 2 f  
Xr~ 

dx, 

(4) 

(5) 

Since at the leading front the permeability tends to zero, as indicated above the melting 
of the ice behind it leads to the pressure falling to an insignificant value, so that we can 

take 

p ( x  v t) = O. (6) 

By assumption, at the trailing front the entire cross section of the bed is occupied by 
water, i.e. o(x m, t) = i. At the leading front, on the other hand, the cross section is 
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wholly occupied by ice, so that o(xs, t)=0 In each cross section the ice content of the 
transition zone per unit volume of the bed is m(l- ~) and it varies from the trailing to the 
leading front as a function of the amount of heat supplied by the water. Through the trailing 
front energy equal to VmPwL is supplied to the transition zone by convection, while the heat 
flux qs passes through the leading front into the frozen medium. If heat losses through the 
roor and floor of the bed are neglected, the difference is wholly expended on melting the ice, 
i.e. 

x~ o O - - ~ ) d x .  v'+Ow g - -  qs = mg iL .f 
Xrf~ 

On the other hand, the convective heat flux VmPwL is determined by the amount qm sup- 
plied in conductive form from the thawed region to the trailing front. As a result, the heat 
balance in the transition zone is given by the equation 

d X8 
q m - - q +  = mp.iL - - ~  [j" a d x  Jr- Xm] . 

XDZ 
(7) 

In the absence of a transition zone, when x m = Xs, Eq. (7) corresponds to the usual Stefan 
condition at a phase transition front. In the formulation in question the heat balance is 
related to the amount of water supplied to the bed, as may be seen from comparing (7) with 
(2). 

For modeling purposes we assume that in this zone o and k(o) vary linearly: 

(r -~_ __X s - X X s - -  X 
; k( ,~)=  k,~ (8)  

X s - -  Xra X s - -  X m 

Substituting these relations in (2) and (5), with allowance for (6), gives 

v(0, t)------~--1 A(xraq-Xs); p(Xm,  l)---- A----~ (Xs - -Xm) ( 'Xn- - j : ra ) .  (9) 
2 2 k  m 

Using (4), we find the following relation between the coordinates of the leading and 
trailing fronts and their derivatives x = dx/dt: 

A~ 
2kin [(x~ -+- "xm) x ~  q-  (x ,  - -  xm) (x~ - -  xm)] = Po. (10) 

A second relation between the coordinates of the two fronts is obtained by combining 
(8) and (7) in the form: 

1 
qm - -  q,  = T mPi g (x , ,  -6 x , ) .  

(11) 

In the simplest case, when the pressure and temperature at the inlet surface (x = 0) are 
constant and equal to p0 and To respectively, and the initial temperature of the bed T i is 
also constant, the problem admitsthe self-similar solution 

xm ---- 2a ]/~-]T; Xs ---- 2b -1/~-~'1/, (12) 

where ~i is the thermal diffusivity of the thawed zone; a and b are certain constants de- 
termined in the course of solving the problem, in this case the temperature distributions 
within the thawed and frozen zones are given by the following expressions: 

T~--Tm = l - - e r f  .... x / 
To -- Tm 2 ] /~ -7  ~ err a, 

T~--T~ = - - l + e r f c  x / ~1 
T~ -- T i 2 "i/~--~" / erfe b ]V'~, ~ ---- --. 

~2 
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Since qm = -- ~':(OT{Ox)xm; q8 = -- %~(OT~/OX)xs, from (Ii) and (i0), using (12), we obtain 

K: V -K, 
= -- (a -{-- b), 

exp ( - -  a) err -Va exp (--  [3b) eric -V~-b 2 
(13) 

and from (i0), together with (13), 

M = a (a + b) + (b -- a) 2, (i4) 

where 

M = __ __ Po D ; K1 = E~(T~  ," K~ = X2(T~--T~) 
~IA k,. ~:rngig czlmpiL .. (14) 

When b = a, and the leading and trailing fronts coincide, Eq. (13) gives the classical 
Stefan solution, denoted below by a0, while (14) is transformed into the expression M0 = 2e% , 
which gives thepressure at the inlet surface of the bed determined by the suction. If the 
pressure at the inlet surface increases, i.e., if it is assumed that M > M0, then Eqs. (13) 
and (14) will determine the parameters of motion of the two fronts. In this case the re- 
lations a<ao and b>bo will always hold, i.e., the trailing front will lag behind the front 
corresponding to theclassical Stefan solution, whereas the leading front will precede it. 
In Fig. 1 we have presented in graphic form the results of solving the problem for KI = 0.i, 
K2 = 0.5, and B = i. 

As may be seen from Fig. i, splitting of the pore ice thawing front is observed when 
M > M0 = 2a~, and the lower the value of ao the smaller the pressures at the inlet surface 
at which splitting of the front takes place. We note that, other things being equal, a0 de- 
creases monotonically at the same time as the temperature To in the inlet section. 

The results obtained can be used to investigate the disaggregation of sand cemented only 
by ice. In the frozen state such sand is a monolithic rock; when heat is supplied, the cementing 
effect of the ice is lost and the sand disintegrates. In the fully thawed out zone the ori- 
ginally monolithic sand may crumble into individualgrains and in the transition zone into 
larger aggregations within which the cementing ice bondsremain intact. Obviously, if the 
heat supply remains the same, the disaggregation volume will be much greater for a split 
front than for ordinary thawing. 

The disaggregation of sand cemented only by ice leads to the formation of voids during 
well drilling with muds at a positive temperature [4, 5]. As follows from the results ob- 
tained, in order to reduce these voids it is necessary not only to lower the temperature of 
the drilling mud hut:, above all, to prevent its aqueous filtrate from entering the bed. 

Experiments were performed to check the qualitative agreement between the thawing model 
proposed and actualdata. The frozensoil being drilled was simulated by a sand cylinder 
chilled to --2~ through whose central cavity water at 2-3~ was pumped. In one series of 
experiments the water flowwas separated from the frozen sand by a copper tube, and in a 
second by a fine mesh wrapped into a cylinder. Thus, in the first series we simulated the 
thawing of pore ice by a conductive heat flux only, while in the second the conductive heat 
flux was supplemented by infiltration of the water. Temperature sensors were installed 
over half the frozen layer and recorded the zero isotherm arrival time. Other things being 
equal, when a mesh cylinder was used the zero isotherm arrival time was reduced by a factor 
of 1.1-1..4 depending on the size of the sand grains; the greatest reducting being observed in 
the case of coarse'grained sands. Since for sandy media the permeability is basically de- 
termined by the grain size, the experimental data point to an acceleration of melting with 
increase in permeability, in full conformity with the ideas outlined above. 

On the basis of the experiments and the theoretical analysis of their results, it has 
been proposed that to redu6e the voids associated with well drilling in frozen soils using 
drilling muds, not only should the heat-transfer coefficient of the muds be reduced but the 
infiltrationindex (water loss) should also" be lowered by adding special polymers: carboxy- 
methyl cellulose, polyethylene oxide, etc. This recommendation has led to a reduction in 
sand evacuation from the wells by a factor of 1.3-1.6 and has made it possible to improve 
the quality of the borehole on the frozen-soil interval without lowering the mud temperature 

[5]. 
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~lao,blao . I  

Fig. i. Velocity ratios for 
the trailing a/a0 and lead- 
ing b/a0 fronts bounding 
the extended isothermal 
zone relative to the classi- 
cal Stefan solution as 
functions of the pressure at 
the inlet surface of the bed 
as given by the dimension- 
less parameter M/M0. 

In conclusion, we note that the proposed model of the front splitting process associ- 
ated with the thawing of pore ice can be complicated by postulating nonzero water saturation 
at the leading front. In this case the pressure at the front is nonzero and is determined 
in the course of solving the problem; however, the qualitative picture remains the same and 
hence the conclusions concerning measures to reduce the disintegration of sand beds cemented 
only by ice during well drilling still hold good. 

NOTATION 

p, density; m is porosity; k, permeability; ~, water saturation; ~, viscosity; L, latent 
heat of fusion of the ice; x, distance; p, pressure; v, percolation velocity; T, temperature; 
t, time; q, heat flux; I, thermal conductivity; ~, thermal diffusivity; B, ratio of the 
thermal diffusivities in the thawed and frozen zones; s Kz, K2, M, a, and b, dimensionless 
parameters. Subscripts: w, i, water and ice; I, 2, thawed and frozen zones; O, inlet surface 
of the bed; i, initial temperature; and m and s, trailing and leading fronts. 
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